WHO. World malaria report 2020: 20 years of world progress and challenges. (2020).
Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria management? Trends Parasitol 27. https://doi.org/10.1016/j.pt.2010.08.004 (2011).
Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human illness. Annu. Rev. Entomol. 45, 371–391 (2000).
Alout, H., Roche, B., Dabiré, R. Okay. & Cohuet, A. Consequences of insecticide resistance on malaria transmission. PLoS Pathog. 13, e1006499 (2017).
Afrane, Y. A., Zhou, G., Lawson, B. W., Githeko, A. Okay. & Yan, G. Effects of microclimatic adjustments attributable to deforestation on the survivorship and reproductive health of anopheles gambiae in Western Kenya Highlands. . Am. J. Trop. Med. Hyg. 74, 772–778 (2006).
Lardeux, F. J., Tejerina, R. H., Quispe, V. & Chavez, T. Okay. A physiological time evaluation of the length of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar. J. 7, 1–17 (2008).
Afrane, Y. A., Little, T. J., Lawson, B. W., Githeko, A. Okay. & Yan, G. Deforestation will increase the vectorial capability of anopheles gambiae giles to transmit Malaria within the Western Kenya Highlands. Emerg. Infect. Dis. 10, 1533–1538 (2008).
Alout, H., Roche, B., Dabiré, R. Okay. & Cohuet, A. J. P. p. Consequences of insecticide resistance on malaria transmission. 13, e1006499 (2017).
Vézilier, J., Nicot, A., Gandon, S. & Rivero, A. J. P. o. t. R. S. B. B. S. Plasmodium an infection decreases fecundity and will increase survival of mosquitoes. 279, 4033–4041 (2012).
McCarroll, L., Hemingway, J. J. I. b. & biology, m. Can insecticide resistance standing have an effect on parasite transmission in mosquitoes? 32, 1345 (2002).
Platt, N. et al. Target-site resistance mutations (kdr and RDL), however not metabolic resistance, negatively impression male mating competiveness within the malaria vector Anopheles gambiae. 115, 243–252 (2015).
Nouage, L. et al. Influence of GST-and P450-based metabolic resistance to pyrethroids on blood feeding within the main African malaria vector Anopheles funestus. (2020).
Rigby, L. M. et al. Identifying the health prices of a pyrethroid-resistant genotype within the main arboviral vector Aedes aegypti. 13, 1–12 (2020).
Tchouakui, M. et al. Fitness prices of the glutathione S-transferase epsilon 2 (L119F-GSTe2) mediated metabolic resistance to pesticides within the main African malaria vector Anopheles funestus. 9, 645 (2018).
Kumar, S. et al. Diminished reproductive health related to the deltamethrin resistance in an Indian pressure of dengue vector mosquito. Aedes aegypti L. 26, 55–64 (2009).
Nkahe, D. L. et al. Fitness price of insecticide resistance on the life-traits of a Anopheles coluzzii inhabitants from the town of Yaoundé. Cameroon. 5, 171. https://doi.org/10.12688/wellcomeopenres.16039.2 (2020).
Machani, M. G. et al. Phenotypic, genotypic and biochemical adjustments throughout pyrethroid resistance choice in Anopheles gambiae mosquitoes. Sci. Rep. 10, 19063. https://doi.org/10.1038/s41598-020-75865-1 (2020).
WHO. World Malaria Report 2016. Geneva: World Health Organization (2016).
Shute, G. T. A way of sustaining colonies of east african strains of anopheles gambiae. Ann. Trop. Med. Parasitol. 50, 92–94. https://doi.org/10.1080/00034983.1956.11685743 (1956).
Knols, B. G. et al. MalariaSphere: A greenhouse-enclosed simulation of a pure Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar. J. 1, 19 (2002).
Afrane, Y. A., Zhou, G., Lawson, B. W., Githeko, A. Okay. & Yan, G. Life-table evaluation of Anopheles arabiensis in western Kenya highlands: Effects of land covers on larval and grownup survivorship. Am. J. Trop. Med. Hyg. 77, 660–666 (2007).
Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening scenario that wants pressing motion to mantain malaria management. Parasites Vectors 32, 187–196 (2016).
Klowden, M. J. & Briegel, H. Mosquito gonotrophic cycle and a number of feeding potential: Contrasts between Anopheles and Aedes (Diptera: Culicidae). J. Med. Entomol. 31, 618–622 (1994).
Mebrahtu, Y. B., Norem, J. & Taylor, M. Inheritance of larval resistance to permethrin in Aedes aegypti and affiliation with intercourse ratio distortion and life historical past variation. Am. J. Trop. Med. Hyg. 56, 456–465 (1997).
Ma, Z., Gulia-Nuss, M., Zhang, X. & Brown, M. R. Effects of the botanical insecticide, Toosendanin, on blood digestion and egg manufacturing by feminine Aedes aegypti (Diptera: Culicidae): topical software and ingestion. J. Med. Entomol. 50, 112–121 (2013).
Gulia-Nuss, M., Robertson, A. E., Brown, M. R. & Strand, M. R. Insulin-like peptides and the goal of rapamycin pathway coordinately regulate blood digestion and egg maturation within the mosquito Aedes aegypti. PLoS ONE 6, e20401 (2011).
Martins, A. J., Bellinato, D. F., Peixoto, A. A., Valle, D. & Lima, J. B. P. Effect of insecticide resistance on growth, longevity and copy of area or laboratory chosen Aedes aegypti populations. PLoS ONE 7, e31889 (2012).
Sy, F. A., Faye, O., Diallo, M. & Dia, I. Effects of insecticide resistance on the reproductive potential of two sub-strains of the malaria vector Anopheles coluzzii. J. Vector Borne Dis. 56, 207–211. https://doi.org/10.4103/0972-9062.289401 (2019).
de Oliveira, C. D., Tadei, W. P., Abdalla, F. C., Paolucci Pimenta, P. F. & Marinotti, O. Multiple blood meals in Anopheles darlingi (Diptera: Culicidae). J. Vector Ecol. 37, 351–358 (2012).
Norris, L. C., Fornadel, C. M., Hung, W.-C., Pineda, F. J. & Norris, D. E. Frequency of a number of blood meals taken in a single gonotrophic cycle by Anopheles arabiensis mosquitoes in Macha, Zambia. Am. J. Trop. Med. Hyg. 83, 33 (2010).
Oliver, S. V. & Brooke, B. D. The impact of a number of blood-feeding on the longevity and insecticide resistant phenotype within the main malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit. Vectors 7, 1–12 (2014).
Lardeux, F., Loayza, P., Bouchité, B. & Chavez, T. Host alternative and human blood index of Anopheles pseudopunctipennis in a village of the Andean valleys of Bolivia. Malar. J. 6, 1–14 (2007).
Farjana, T. & Tuno, N. Multiple blood feeding and host-seeking habits in Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 50, 838–846 (2013).
Osoro, J. Okay. et al. Insecticide resistance exerts vital health prices in immature phases of Anopheles gambiae in western Kenya. Malar. J. 20, 1–7 (2021).
Telang, A., Frame, L. & Brown, M. R. Larval feeding length impacts ecdysteroid ranges and dietary reserves regulating pupal dedication within the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). J. Exp. Biol. 210, 854–864. https://doi.org/10.1242/jeb.02715 (2007).
Belinato, T. A., Martins, A. J. & Valle, D. Fitness analysis of two Brazilian Aedes aegypti area populations with distinct ranges of resistance to the organophosphate temephos. Mem. Inst. Oswaldo Cruz 107, 916–922 (2012).
Brito, L. P. et al. Assessing the consequences of Aedes aegypti kdr mutations on pyrethroid resistance and its health price. PLoS ONE 8, e60878 (2013).
https://www.nature.com/articles/s41598-022-12753-w