Caloric restriction disrupts the microbiota and colonization resistance

  • 1.

    David, L. A. et al. Diet quickly and reproducibly alters the human intestine microbiome. Nature 505, 559–563 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 2.

    Johansson, Ok., Neovius, M. & Hemmingsson, E. Effects of anti-obesity medication, weight loss program, and train on weight-loss upkeep after a very-low-calorie weight loss program or low-calorie weight loss program: a scientific evaluation and meta-analysis of randomized managed trials. Am. J. Clin. Nutr. 99, 14–23 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    Louis, S., Tappu, R. M., Damms-Machado, A., Huson, D. H. & Bischoff, S. C. Characterization of the intestine microbial neighborhood of overweight sufferers following a weight-loss intervention utilizing complete metagenome shotgun sequencing. PLoS ONE 11, e0149564 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 4.

    Heinsen, F.-A. et al. Beneficial results of a dietary weight reduction intervention on human intestine microbiome variety and metabolism aren’t sustained throughout weight upkeep. Obes. Facts 9, 379–391 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Spranger, L. et al. Thrifty power phenotype predicts weight regain — outcomes of a randomized managed trial. Preprint at https://www.medrxiv.org/content/10.1101/2021.03.25.21254300v1 (2021).

  • 6.

    Kohl, Ok. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the intestine microbiota to extended fasting: a comparative examine throughout 5 lessons of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding sample have an effect on the diurnal dynamics of the intestine microbiome. Cell Metab. 20, 1006–1017 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Harris, J. Ok. et al. Specific microbiome adjustments in a mouse mannequin of parenteral vitamin related liver harm and intestinal irritation. PLoS ONE 9, e110396 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 9.

    van Passel, M. W. et al. The genome of Akkermansia muciniphila, a devoted intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 10.

    Morrison, D. J. & Preston, T. Formation of brief chain fatty acids by the intestine microbiota and their impression on human metabolism. Gut Microbes 7, 189–200 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Uchiyama, T., Irie, M., Mori, H., Kurokawa, Ok. & Yamada, T. FuncTree: purposeful evaluation and visualization for large-scale omics knowledge. PLoS ONE 10, e0126967 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 12.

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Langille, M. G. et al. Predictive purposeful profiling of microbial communities utilizing 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Bäckhed, F. et al. The intestine microbiota as an environmental issue that regulates fats storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 15.

    Cani, P. D. et al. Microbial regulation of organismal power homeostasis. Nat. Metab. 1, 34–46 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 16.

    Hunt, J. J. & Ballard, J. D. Variations in virulence and molecular biology amongst rising strains of Clostridium difficile. Microbiol. Mol. Biol. Rev. 77, 567–581 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 17.

    Bauer, M. P. et al. Clostridium difficile an infection in Europe: a hospital-based survey. Lancet 377, 63–73 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Kuehne, S. A. et al. The function of toxin A and toxin B in Clostridium difficile an infection. Nature 467, 711–713 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Wüst, J., Sullivan, N. M., Hardegger, U. & Wilkins, T. D. Investigation of an outbreak of antibiotic-associated colitis by varied typing strategies. J. Clin. Microbiol. 16, 1096–1101 (1982).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 22.

    Festi, D. et al. Gallbladder motility and gallstone formation in overweight sufferers following very low calorie diets. Use it (fats) to lose it (nicely). Int. J. Obes. Relat. Metab. Disord. 22, 592–600 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 23.

    Carmody, R. N. et al. Cooking shapes the construction and performance of the intestine microbiome. Nat. Microbiol. 4, 2052–2063 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 24.

    Fang, F. C., Polage, C. R. & Wilcox, M. H. Point-counterpoint: what’s the optimum method for detection of Clostridium difficile an infection? J. Clin. Microbiol. 55, 670–680 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Furuya-Kanamori, L. et al. Asymptomatic Clostridium difficile colonization: epidemiology and scientific implications. BMC Infect. Dis. 15, 516 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 26.

    Zacharioudakis, I. M., Zervou, F. N., Pliakos, E. E., Ziakas, P. D. & Mylonakis, E. Colonization with toxinogenic C. difficile upon hospital admission, and danger of an infection: a scientific evaluation and meta-analysis. Am. J. Gastroenterol. 110, 381–390, quiz 391 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Caporaso, J. G. et al. Ultra-high-throughput microbial neighborhood evaluation on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Callahan, B. J. et al. DADA2: High-resolution pattern inference from Illumina amplicon knowledge. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 29.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for fast task of rRNA sequences into the brand new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) evaluation for blended inhabitants RNA-seq. PLoS ONE 8, e67019 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Fernandes, A. D. et al. Unifying the evaluation of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective progress experiments by compositional knowledge evaluation. Microbiome 2, 15 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular knowledge units. Nucleic Acids Res. 40, D109–D114 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 34.

    Zhao, Y., Tang, H. & Ye, Y. RAPSearch2: a quick and memory-efficient protein similarity search instrument for next-generation sequencing knowledge. Bioinformatics 28, 125–126 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 35.

    Nayfach, S. & Pollard, Ok. S. Average genome measurement estimation improves comparative metagenomics and sheds mild on the purposeful ecology of the human microbiome. Genome Biol. 16, 51 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 36.

    Law, C. W., Chen, Y., Shi, W. & Smyth, G. Ok. voom: precision weights unlock linear mannequin evaluation instruments for RNA-seq learn counts. Genome Biol. 15, R29 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 37.

    Wu, D. et al. ROAST: rotation gene set checks for complicated microarray experiments. Bioinformatics 26, 2176–2182 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and delicate protein alignment utilizing DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Menzel, P., Ng, Ok. L. & Krogh, A. Fast and delicate taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic evaluation with Kraken 2. Genome Biol. 20, 257 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to categorise genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed Central 

    Google Scholar
     

  • 42.

    Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C. Isolation and direct full nucleotide willpower of whole genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    Sarafian, M. H. et al. Bile acid profiling and quantification in biofluids utilizing ultra-performance liquid chromatography tandem mass spectrometry. Anal. Chem. 87, 9662–9670 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 44.

    Cai, J. et al. Orthogonal comparability of GC-MS and 1H NMR spectroscopy for brief chain fatty acid quantitation. Anal. Chem. 89, 7900–7906 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Zheng, X. et al. A focused metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 9, 818–827 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Erben, U. et al. A information to histomorphological analysis of intestinal irritation in mouse fashions. Int. J. Clin. Exp. Pathol. 7, 4557–4576 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Chen, E. Z. & Li, H. A two-part mixed-effects mannequin for analyzing longitudinal microbiome compositional knowledge. Bioinformatics 32, 2611–2617 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Turnbaugh, P. J. et al. The impact of weight loss program on the human intestine microbiome: a metagenomic evaluation in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 49.

    Fouladi, F. et al. Sequence variant evaluation reveals poor correlations in microbial taxonomic abundance between people and mice after gnotobiotic switch. ISME J. 14, 1809–1820 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 50.

    Persson, S., Torpdahl, M. & Olsen, Ok. E. New multiplex PCR technique for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes utilized to a Danish pressure assortment. Clin. Microbiol. Infect. 14, 1057–1064 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 51.

    Kubota, H. et al. Longitudinal investigation of carriage charges, counts, and genotypes of toxigenic Clostridium difficile in early infancy. Appl. Environ. Microbiol. 82, 5806–5814 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Li, D., Liu, C.-M., Luo, R., Sadakane, Ok. & Lam, T.-W. MEGAHIT: an ultra-fast single-node resolution for big and complicated metagenomics meeting by way of succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 53.

    Alneberg, J. et al. Binning metagenomic contigs by protection and composition. Nat. Methods 11, 1144–1146 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a versatile pipeline for genome-resolved metagenomic knowledge evaluation. Microbiome 6, 158 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the standard of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a versatile trimmer for Illumina sequence knowledge. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Bankevich, A. et al. SPAdes: a brand new genome meeting algorithm and its purposes to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G. & Toth, I. Ok. Genomics and taxonomy in diagnostics for meals safety: soft-rotting enterobacterial plant pathogens. Anal. Methods 8, 12–24 (2015).

    Article 

    Google Scholar
     

  • 59.

    Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a brand new technique for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 (2013).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 60.

    Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 45, D535–D542 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 61.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest bundle: checks in linear blended results fashions. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar
     

  • 62.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 63.

    Brouns, F. et al. Glycaemic index methodology. Nutr. Res. Rev. 18, 145–171 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • Recommended For You

    About the Author: Adrian

    Leave a Reply